ビジネス成長のためのリソース

2025年11月30日

なぜ数学は難しいのか(たとえAIであっても)

言語モデルは、私たちが円周率を記憶するように、結果を掛け算で記憶する方法を知らない。問題は構造的なもので、アルゴリズム的な理解ではなく、統計的な類似性によって学習するのだ。o1のような新しい「推論モデル」ですら、些細なタスクでは失敗する。「いちご」の「r」は数秒の処理で正しく数えられるが、各文の2文字目が単語を構成する段落を書かなければならないときには失敗する。月額200ドルのプレミアム・バージョンでは、子供が即座に解ける問題を解くのに4分かかる。2025年のDeepSeekとMistralはまだ文字の数え間違いがある。新たな解決策は?ハイブリッド・アプローチ-最も賢いモデルは、自分自身で計算を試みるのではなく、本物の電卓を呼び出すタイミングを見極めている。パラダイムシフト:AIはすべてを行う方法を知っている必要はなく、適切なツールを編成する必要がある。最後のパラドックス:GPT-4は極限理論を見事に説明できるが、ポケット電卓が常に正しく解く掛け算を間違えてしまう。数学教育には最適で、無限の忍耐力をもって説明し、例題を適応させ、複雑な推論を分解する。正確な計算には?人工知能ではなく、電卓に頼りなさい。
2025年11月29日

人工知能革命:広告の根本的変革

71%の消費者がパーソナライゼーションを期待しているが、76%はパーソナライゼーションがうまくいかないと不満を感じている。DCO(ダイナミック・クリエイティブ最適化)は、何千ものクリエイティブ・バリエーションを自動的にテストすることで、CTR +35%、コンバージョン率 +50%、CAC -30%という検証可能な結果をもたらします。ファッション小売業の事例:マイクロセグメントごとに2,500の組み合わせ(50の画像×10の見出し×5のCTA)を配信=3ヶ月で+127%のROAS。しかし、壊滅的な構造的制約:コールドスタート問題には2~4週間+最適化のための数千インプレッションが必要、68%のマーケターはAIの入札決定を理解していない、クッキーの非推奨化(Safariはすでに、Chromeは2024~2025年)によりターゲティングの再考を余儀なくされる。ロードマップ6ヶ月:データ監査と特定のKPI(「売上を増やす」ではなく、「CACを25%減らす」セグメントX)で基礎を固め、試験的に10-20%の予算でAI対手動のA/Bテストを行い、クロスチャネルDCOで60-80%スケールする。プライバシーの緊張が重要:79%のユーザーがデータ収集に懸念、広告疲労-5回以上の露出で60%のエンゲージメント。Cookielessの未来:コンテクスチュアル・ターゲティング2.0リアルタイムのセマンティック分析、CDP経由のファーストパーティデータ、個別トラッキングなしのパーソナライゼーションのための連携学習。