AIは再生可能エネルギーとスマートグリッドの最適化を通じてエネルギー管理を変える。アルゴリズムが電力会社を助ける
- CO2排出量の削減
- 自然エネルギーの信頼性向上
- 需要の予測
- 中断の防止
- 流通の最適化
インパクト
- 発電:
予測アルゴリズムは、太陽光発電や風力発電の気象条件を予測することで、自然エネルギーの信頼性を向上させる。予知保全は、プラントのダウンタイムと運転コストを削減します。
- エネルギー消費:
インテリジェント・ホーム・システムは、サーモスタット、照明、家電製品を自動的に調整する。
- ネットワーク管理
現代のデジタル技術は、エネルギーインフラの管理方法に革命をもたらしつつある。特に、人工知能は配電会社にとって貴重なツールであることが証明されつつある。これらの高度なシステムは、送電線から変電所まで、ネットワーク全体に分布するセンサーからの膨大な量のデータを継続的に分析する。
高度な機械学習アルゴリズムのおかげで、サービスの中断を引き起こす前に潜在的な問題を特定することが可能になった。予知保全として知られるこの予防的アプローチは、目覚ましい成果を上げている。この分野のいくつかの企業では、サービスの中断が激減し、その結果、市民や企業に提供されるサービスの質が大幅に改善された。
この技術革新の影響は、単に停電を減らすだけにとどまらない。問題を予測し、未然に防ぐ能力によって、より効率的な資源管理、より良い介入計画、ひいては地域社会全体にとってより信頼性が高く持続可能な電力サービスが可能になるのだ。
インパクトの例
- シーメンス・エナジー:ダウンタイム-30
- ゼネラル・エレクトリック:年間10億ドルの節約
- イベルドローラ:再生可能エネルギーにおけるエネルギー浪費25%減
テスト済みのアプリケーション:
- シェルとBP:オペレーションの最適化と排出削減
- テスラ:エネルギー貯蔵とクリーンソリューション
- デューク・エナジーとナショナル・グリッド:送電網の近代化
AIはエネルギー管理を改善する:
- より効率的
- より信頼できる
- より持続可能な
- より安い
これらの開発は、すでに現場で応用可能な技術的解決策を通じて、より持続可能なエネルギーシステムへの移行を支援するものである。
結論
人工知能はエネルギー部門に革命をもたらし、エネルギーの生産、分配、消費を最適化する革新的なソリューションを提供している。しかし、AI自体にもエネルギーへの影響がある。AIモデルの訓練と実行に必要なコンピューティング・センターには大量のエネルギーが必要で、複雑なモデルの1回の訓練に最大数百キロワット時を消費するという試算もある。
エネルギー分野でAIの正味の利益を最大化するため、企業は包括的なアプローチをとっている。一方では、より効率的なアーキテクチャと特殊なハードウェアを使用する。もうひとつは、再生可能エネルギーでコンピューティング・センターに電力を供給することで、AIが再生可能エネルギーの管理を改善し、それがひいてはAIシステムに電力を供給するという好循環を生み出すことだ。
AIがエネルギー転換のための持続可能なツールであり続けるためには、計算効率やデータセンターの冷却技術における革新が、再生可能エネルギーや、許可されている場合には原子エネルギーの利用とともに極めて重要になる。
このアプローチが長期的に成功するかどうかは、システムの運用上の利点とエネルギーの持続可能性のバランスをとることができるかどうかにかかっている。このテーマについては、後ほど具体的に書くつもりである。