ビジネス成長のためのリソース

2025年11月29日

なぜ数学は難しいのか(たとえAIであっても)

言語モデルは、私たちが円周率を記憶するように、結果を掛け算で記憶する方法を知らない。問題は構造的なもので、アルゴリズム的な理解ではなく、統計的な類似性によって学習するのだ。o1のような新しい「推論モデル」ですら、些細なタスクでは失敗する。「いちご」の「r」は数秒の処理で正しく数えられるが、各文の2文字目が単語を構成する段落を書かなければならないときには失敗する。月額200ドルのプレミアム・バージョンでは、子供が即座に解ける問題を解くのに4分かかる。2025年のDeepSeekとMistralはまだ文字の数え間違いがある。新たな解決策は?ハイブリッド・アプローチ-最も賢いモデルは、自分自身で計算を試みるのではなく、本物の電卓を呼び出すタイミングを見極めている。パラダイムシフト:AIはすべてを行う方法を知っている必要はなく、適切なツールを編成する必要がある。最後のパラドックス:GPT-4は極限理論を見事に説明できるが、ポケット電卓が常に正しく解く掛け算を間違えてしまう。数学教育には最適で、無限の忍耐力をもって説明し、例題を適応させ、複雑な推論を分解する。正確な計算には?人工知能ではなく、電卓に頼りなさい。